

A-LEVEL Physics B

PHYB2 – Physics Keeps Us Going Mark scheme

2455 June 2015

Version 1: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Question	Part	Sub Part	Marking Guidance	Mark Type	Mark	Comments
1	а		Scalar has magnitude and vector has magnitude and direction	B1	1	Condone "size" for magnitude
1	b		Suitable e.g. acceleration / displacement / momentum	B1	1	
2			Right-angled triangle, nose-to-tail with arrows Appropriate scale (fills half the space minimum) 52 ± 1 (degrees)	M1 A1 B1	3	1 mark for 52.3° by calculation
3	а		lons (first box) lons <u>and</u> (free) electrons (second box)	B1 B1	2	
3	b		(Free) electrons gain energy (from applied pd) / (free) electrons flow/move Electrons interact/collide with the ions of the lattice/metal Transferring their energy to ions / increasing the (kinetic/vibrational) energy of ions	B1 B1 B1	3	Allow "atoms" for ions
3	С		Substitution, ignoring powers of ten, into $\rho = \frac{RA}{L}$ Correct substitution $1.68 \times 10^{-8} \ (\Omega \ m)$ 2 sf answer with supporting calculation	C1 C1 A1 B1	4	
4	а		Correct use of horizontal speed = 9.2 (m s ⁻¹) 7.4 (m)	C1 A1	2	Any method using area = zero
4	b		(Raising legs) increases her time in the air	B1	Max 2	

	1			_		1
			(Raising legs) reduces air resistance / increases streamlining	B1		
			Distance travelled = horizontal velocity x time	B1		
	1					
5	а		Geothermal	B1	1	
			Solar/Wind/Waves/HEP/Tidal/Geothermal/Biomass	B1		
5	b		Appropriate reason e.g. unreliability, limited availability, public	B1	2	
			opposition			
6	а	i	11 (m)	B1	1	
6	a	ii	Use of $F = k\Delta L$ or $W = mg$	C1	2	Allow use of $\Delta L = 12 \text{ m}$
U	а		3400 (N)	A1		
6	h		Sets $mg = k\Delta L$	C1	2	
U	b		1.9 (m)	A1		
			Correct use of $W = \frac{1}{2}k\Delta L^2$ or $\frac{1}{2}F\Delta L$	C1	C1	$\Delta L = 5 \text{ m}$
C		_	Correct use of $\triangle GPE = mg\Delta h$	C1		<i>∆h</i> = 25 m
6	С		States or uses $(mg\Delta h) - (\frac{1}{2}k\Delta L^2) = \frac{1}{2}mv^2$	C1	4	
			19 (m s ⁻¹) cnao	A1		
				•		•
			Same kinetic energy when rope begins to stretch	B1		
6	d		More work done per unit extension / stops in shorter distance	B1	3	"Shorter time" gets no credit.
			Increases force on jumper (increasing the risk of injury)	B1		Ĭ

7			Use of $P = VI$ with pair of valid coordinates from graph	C1		
7	а	'	0.52 (W)	A1	2	Allow 1sf if within 0.49 to 0.52
						_
7	а	l ii	Correct general shape	M1	2	
,	а	"	Linear rise between 0.0 – 0.5 V and falls to zero at 0.71 V	A1	1 2	
	T	1			T	
			Use of efficiency = $\frac{useful\ power\ out}{total\ power\ in}$	C1		
7	а	iii	Use of $I = \frac{P}{I}$	C1	3	
			Their (ai)/67.5 (m ²) (7.7 x 10^{-3} if correct)	A1		
				711		
			0.7 J of work done (by cell) per 1 C of charge (when moved round	B1		Not "per unit charge"
7	h	i	circuit)		4	
/	b		OR		I	
			(terminal) pd across (solar) cell with no load/current is 0.7 V			
	r				•	
			20 cells in series (to produce 14 V)	B1		
7	b	ii	Series arrangement has internal resistance of 15.6 Ω		B1 4	
,		"	Cells in parallel (needed to reduce total internal resistance of array)	B1		
			80 cells / 4 parallel sets of 20 cells in series	B1		

		The marking cohome for this supption includes an averall	DC	Como pointo:
		The marking scheme for this question includes an overall	B6	Some points:
		assessment for the quality of written communication (QWC).		Has an assumination actallity.
		There are no discrete marks for the assessment of QWC but		Use on communication satellite:
		the candidate's QWC in this answer will be one of the criteria		
		used to assign a level and award the marks for this question.		Continuous supply of energy from Sun
				No need for fuel (for power purposes)
		Descriptor – an answer will be expected to meet most of the		Large area of solar cells not needed (but
		criteria in the level descriptor.		possible)
		Level 3 – good		Low mass
		-claims supported by an appropriate range of evidence;		Can be unfolded (after launch)
		-good use of information or ideas about physics, going beyond		No environmental hazard
		those given in the question;		Reliable/no moving parts
		-argument is well structured with minimal repetition or		
		irrelevant points;		Continuous operation:
		-accurate and clear expression of ideas with only minor errors		
7		of grammar, punctuation and spelling.		6 Arrays need to track sun (to maximise
/	С	Level 2 – modest		absorption)
		-claims partly supported by evidence;		Shielding required as can be damaged by
				meteors or cosmic rays
		-good use of information or ideas about physics given in the		Need storage system (rechargeable
		question but limited beyond this;		batteries/capacitors) for back up (if in
		-the argument shows some attempt at structure;		shadow)
		-the ideas are expressed with reasonable clarity but with a few		Limit use of energy-intensive operations
		errors of grammar, punctuation and spelling.		57
		Level 1 – limited		Use on space probe:
		-valid points but not clearly linked to an argument structure;		
		-limited use of information about physics;		Light intensity/energy too low at large
		-unstructured;		distance
		-errors in spelling, punctuation and grammar or lack of fluency.		Intensity falls as inverse-square
		Level 0		Area of array would be too large
		-incorrect, inappropriate or no response.		Solar cells will have degenerated too
				much over this time
				maon over this time

8	а	i	85 - 23 / 0.14 = 440 seen	B1	1	
		_				
			Use of $A = \pi r^2$ or correctly makes k subject	C1		
8	а	ii	207	A1	3	
			W K ⁻¹ m ⁻¹	B1		
	•					
			Lower (thermal) conductivity	B1		
8	а	iii	Smaller (cross-sectional) area / diameter	B1	Max 2	Condone "thickness" for area
			Longer bar	B1		
<u> </u>	•	•	•		•	•
			Read off R (57-59 Ω) from graph	B1		
			, , ,			
8	b	i	Use of $V_{out} = \frac{R_1}{R_1 + R_2} \times V_{in}$	B1	3	
		'	$OSCOIV_{out} = \frac{1}{R_1 + R_2} \wedge V_{in}$		3	
			5700	B1		Allow 5.6 to 5.8
			5.7 (V)			
	1		Taxaada D	1.40		T
			Towards R	MO		
			Resistance of thermistor decreases / Total resistance in circuit	A1		
			decreases	A1		
			Current increases	A1		
			Larger current through 100 Ω resistor (so large pd)			
8	b	ii	OR		3	
			OR			
			Towards R			
			Resistance of thermistor decreases			
			pd splits in ratio of the resistors' values			
			1: .			
			100 Ω has bigger proportion of ratio (therefore greater share of pd)			

9	а	i	Use of $KE = \frac{1}{2} m v^2$ 21.7 (J)	C1 A1	2	
9	а	ii	Use of $W = Fs$ 0.70 (m)	C1 A1	2	Allow 1 mark for use of suvat or F=ma
9	b		Use of $\Delta E_p = mg\Delta h$ Correct sub for h (1.7 sin 18°) 77.3 (W) OR Use of $P=Fv$ Correct sub for F (mg sin 18°) or v (1.7 sin 18°) 77.3 (W)	C1 C1 A1	3	